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INntroduction

< modulated signal

s(t) = Relg (1)’ |

» complex envelope g(t) is a function of the
modulating signal m(t):

g(t) = g[m()]

2[.] performs a mapping operation on m(7)

e Modulation is the process of imparting the source
information onto a Band-pass signal with a carrier
frequency f.by the introduction of amplitude or phase
perturbations or both.
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Introduction

Classification of modulation
according to modulating signal m(t) :

eAnalog modulation

Binary modulation

eDigital modulation
Multilevel modulation

according to carrrier 4 cos(wt+86,) -
e Amplitude modulation (AM)
e Phase modulation (PM)
e Frequency modulation (FM)
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Introduction

The goals of this chapter are to

@ Study g(t) and s(t) for various types of analog
and digital modulations

@cvaluate the spectrum for various types of
analog and digital modulations

@ecxamine some transmitter and receiver
structures
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5.1 Amplitude modulation
(AM)
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Amplitude modulation

The complex envelope of an AM signal:
g(t) = A.[1+m(r)]

m(t)

AM signal: 1&\\_‘//’\\

S (t) — Ac [1 +m (t)] COS a)ct (a) Sinusoidal Modulating Wave

S0 TTTJJ( q\%@mﬂﬁ ﬂ’ﬁ? LWF:A j};:_:l'*m
JJUJM “““ ~~ul;J:J;‘wﬂf’u' """""

(b) Resulting AM Signal
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Amplitude modulation

Definition:
" . Amaxc-Ac
%opositive modulation= n x100 = max[m(z)]x100
%negative modulation= AC:min x100 =—min[#(¢)] <100
Avrex-Ain maX[m(t )] —Mi n[WI(f )] 100

%omodulation= x100 =
2Ac 2

Ao max{A4[l+m(¢s)]} A..: min{A[1+m(z)]}

A 1 A[l+m(¢)], when m(t)=0
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Amplitude modulation

FExample: 5-5

A 50000w AM broadcast transmitter is being
evaluated by means of a two-tone test. The
transmitter m(t) = 4, cos @t + 4, cos 2w,t 0ad, and

where f;=500Hz. Assume that a pefect AM

sighal Is generated.
Determine:

(a)Evaluate the complex envelope for the AM signal in terms
of A, and ;.

(b)Determine the value of A, for 90% modulation.

(¢) find the value of the peak current and average current
into the 50 Q load for the 90% modulation case.
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Amplitude modulation

Detection

® If the percentage of negative modulation is less
than 100%, an envelope detector may be used to
recover the modulation without distortion;

® If the percentage of negative modulation is
over 100%, undistorted modulation can still be
recovered provided the product detector is
used.

® A product detector is superior to an envelope
detector when the input signal-to-noise ratio is
small.
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Amplitude modulation

 normalized average power

(*0) =5 (e[ ) = 5 4B+ mO)’)

= %Af<1+ 2m(t) + mz(t)>

— %Af +M+%A§<m2(t)>

e If the modulation contains no dc level, then
(m(t) ) =0, and the normalized power of the AM
signal is
<S2(t)> = 1/24> +1/24’ <m2(t)>

Hf__J - ~
discrete carrier power sideband power
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Amplitude modulation

 modulation efficiency

o)
E = x100%
1+ <m2 (z)>

* The highest efficiency that can be attained for a 100%
AM signal would be 50%.

 The normalized peak envelope power (PEP) of the

AM signal:
2

Pppp = AZC {1+ max[m(r)]}

12
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Amplitude modulation

e Spectrum

gt)=A[N+m@x)] wmmp G(/)=A[5(/)+M(f)]

S(/) =§[G(f—ﬂ>+G*<—f—Jz)]
1 {5(—f> = 5(/)

@ M™(=f)=M(f)

S(f):%a(f—fc)+M(f—fc)+5(f+fc)+M(f+fc)]

SHYEREF X
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Amplitude modulation

e Spectrum

S(f):§[5(f—fc)+M(f—fc)+5(f+fc)+M(f+fC)]

The AM spectrum is just a translated version of
the modulation spectrum plus delta functions
that give the carrier line spectral component.

The bandwidth is twice that of the modulation
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Amplitude modulation

e Spectrum

Example

Evaluate the
magnitude
spectrum for
an amplitude-
modulated
(AM) signal.

M(f
|
/\
B ! B
1 L e o
|
(a) Magmtude Spectrum of Modulation
S(F) Discrete carrier term
Weight = I | with '.l.;'.i;:lﬂ ' —ll.
4 , 1
' Lowel Upper
/\ L sideband sideband
fowis =g f.+ B f. B £, e )
f'————‘-
(b) Magnitude Spectrum of AM Signal
Figure 4-2 Spectrum of AM signal.
AR RELS T3
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Amplitude modulation

Example: power of an AM signall

Problem: suppose that a 5000w AM transmitter

connected to a 50Q load, A4 is given

1 : :
by EACZ /50=5000,4, =707(V) , If the transmitter is

1002 modulated by a 1000 Hz test tone.

Determine:
The total average power.
The peak envelope power (PEP) on the 50 Q load.
The modulation efficiency.
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5.3 Double-sideband
Suppressed Carrier
(DSB-SC)
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Double-sideband Suppressed Carrier

A double-sideband suppressed carrier
(DSB-SC) signal 1s an AM signal that
has a suppressed discrete carrier.

The complex envelope : [ g(¢) = 4 m(¢)

DSB-SC signal: s(t) = A .m(¢t)cos .t

 The voltage spectrum of the DSB-SC signal is

A

5 M 1)+ M+ 1]

S(f) =

18 OLinury
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Double-sideband Suppressed Carrier

Characteristic
® The modulation efficiency of a DSB-SC is 100%

® A product detector (which is more expensive
than an Envelope detector) is required for
demodulation of the DSB-SC signal

® The sideband power of a DSB-SC signal is 4
times that of a comparable AM signal with the
some peak level.
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5.5 Asymmetric sideband
sighals
(SSB)
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Asymmetric sideband signals

éignal sideband
definition

* An upper single sideband (USSB) signal has a
zero-valued spectrum for | f| <f_, where f_ is
the carrier frequency.

* A lower signal sideband (LLSSB) signal has a
zero-valued spectrum for | f| > f. where f_is
the carrier frequency.
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Asymmetric sideband signals

-
Signal sideband
|
0]
B 5 B
L e o
|
(a) Magmtude Spectrum of Modulation
S(f) Discrete carrier Il|_=r1'|1.
A with '-'-t'.if'_'|l-1 ' 3 A,
./
4
Lower o Upper
L sideband sideband
.Er'; _'I.. Jf _,lll I T .IFJI

(b) Magnitude Spectrum of AM Signal
Figure 4-2 Spectrum of AM signal.
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Asymmetric sideband signals

The complex envelope of an SSB signal is given by

g(t) = A.[m(t) = jm(?)]
Which results in the SSB signal waveform:
s(t) = A [m(t) cosw.t ¥ m(¢)sin a ¢]

Where m(t) Denotes the Hilbert transform of m( ¢),
which is given by:

m(t) = m(t) * h(z)

Where h(t)=1/( 7t), and H( f) = F| h(t) ] corresponds
to a -90° phase-shift network: _i £>0

H<f>={j o

SHYEREF X
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Asymmetric sideband signals

Proof for USSB signal

2(t) = A,[m(r) + jin(?)] m(£) = m(e) * h(z)
G(f) = 4[M(t)+ jFTm(@]] ~ Flm(]=M(/)H (/)
—G(f)=AIM(f)+ M (f)H(f)] — — H(f)= -j >0
=AM(f)L+ jH(f)] J /<0
B 2AM(f) [f>0
G(f)—{o <0

2AM(f), [f>0

=G (f) = AIM ()= M (DH"(f)] = G'(f ):{o f<0

S(f)=%G(f—fc)+%G*(—f—fc)

S(f):AC{M(f—fC), f>fc}+Ac{0 , f>—fc}<_

0 S </ M(f+f), f<-Ff

T Your site here e
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Asymmetric sideband signals

'® The normalized average power of the SSB
signal

() = <\g( ) >——A (Im(@) + jim(e) )

:%A2< () + 7 (1))

=42 (m* (1))
® The normalized peak envelope power (PEP) is :

PEP - % max{|g(1)’ = %Af max m?(¢) + [m(6)}

SEREE TS
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Asymmetric sideband signals

Characteristic of the SSB signhal

® SSB signal have both AM and PM
For the AM component (real envelope):

R(t) =g(t)| = Af\/mz(f) +[m(0)]

For the PM component:

0(t)=Lg(t) =tan " imn/zt(;)

tiaxy
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Asymmetric sideband signals

Characteristic of the SSB signal

® superior detected signal-to-noise compared
to that of AM

®The bandwidth is the same as that of the
modulating signal (which is half the bandwidth
of an AM or DSB-SC signal).

®The SSB signal can be demodulated by using
a coherent detector, not a simple envelope
detector.
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Asymmetric sideband signals

Generation of SSB sucoudprocesing

band of m(t)

L _______________ .
Oscillat ~-90° phase ! A sin(a@ ?)
scillator - shift

f=le ohot

: I .
: I m(t)
I s
I
I ]
I
m(t) | !
I
1
Modulation | :
input : -90° phase | I m(r)
| i chift across :‘
I
| |
i I
|

A.cos(w,.1)

a. Phasing method

Sideband filter (band-

m(t) - pass filter on either s(?) .
Modulation z ; upper or lower SSB signal
input sideband) '
A.cos(w, 1)

Oscillator
f=rf

b. Filter method

Figure 5-5 Generation of SSB.



Asymmetric sideband signals

Generation of SSB

m(t)

Modulation
input

Low-pass
t
@ vs(r) | Low-pe vs (1) vy (1
1
ﬁ () = _2— B Hz ‘
vy (1) Oscillator Oscillator v (1)
1
fO:_E_B f{):f;+—%‘B
Y '
-0 -90°
phase phase
shaft shift
v, () vg (£)
va (1) Low-pass V6 (¢) NG
5 filter 6 10
0 - - BHz
’
c. Weaver’'s method
29 G Linu+y
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Vestigial sideband signals

Vestigial sideband

(VSB) is obtained by
partial suppression of

one of the sidebands of
a DSB signal.

Sysp (1) = s(t) * h,(¢)

For recovery of

undistorted modulation,
VSB filter must satisfy the

constraint:

H,(f=f)+H,(f+1)=C,

VES Filter Sysalf)

mlr) !_ DBS W) :
1 (Bandpass Filter) =@
Modulation | Modulator DBS H, -1.5 VSR
= e
{a) Generation of V5B Signal
S
’ B
1
=L 0| f p
[b) Spectrum of DSB Signal

]
{¢) Transfer Function of V5B Filter
1 I

J I ] :
: i
—_\:
h ]
| i

-k

Syss (F)

|
(d) Spectrum of VSB Signal
[

c

=1

) F—n

H(f — fc) + Hy(f + f}-}i

H(f = fe)

. ;
AN TS HA )

L iy

() ¥SB Filter Constraint

30
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AM g(t)= A [1+m()] s(t)= A.[L+ m(t)]cosw, .t

S(f)=§[5(f—fc)+M(f—fc)+5(f+fc)+M<f+fc)]

_ 2 2 2
p= 24, <124 m'e) Bandwidth: 2B

discrete carrier power sideband power

DSB-SC |[g(?) = 4.m(t) s(t)= A.m(t)coSw .t
S(N)=V24 M (f-£)+M(f + £.)]

p=U2AZ(m* (1)) Bandwidth: 2B

SSB-AM X AR
g(t)=A.[m(t) £ jm(t)] s(t) = A.[m(¢)cosw.t =m(t)sin w,]

AM(f = 1) f>fc}+{ 0 f>—fc}
0 St AMUHL) et

p=AXm*(®)) = Bandwidth: B © %3

S(f)={



5.6 Phase Modulation and
Frequency Modulation

content

®Representation of PM and FM signal
®Spectrum of angle-modulation signals
®Frequency-Division multiplexing
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“Representation of PM and FM signal

The of the Angle-modulated
signal is: :
g(t)= 4.

Angle-modulated signal is:
s(t) = A.cos|w .t + O(t)]
For PM, the phase is directly proportional to m(z)
0(t) =D ,m(¢)
For FM, the phase is proportional to the integral of m(7)

o(t)=D, j m(c)do o ernes
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Relationship between PM and FM

d/dt
Phase frequency

[ dt

PM:  6()=D,m(0) FM: 00)=D, [m(o)do

N\ —

HPM (t) = HFM (t)

PM by m (?), there is also FM, the . = Dy [dmp (t)]
corresponding FM by m (?) is: 7D I dt

: Dy
FM by m{#), there is also PM, the m, =—- I m,(o)do
corresponding PM by m () is : " D,

34
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Generation of FM from PM ,

and vice versa

a) Generation of FM using a phase Modulator

M) | Integrator
Gain=D{D,,

my(t)

Phase modulator
(carrier frequency = f )

s(t)

FM signal out

b) Generation of PM using a frequency Modulator

m.(t) Differentiator
Gain=D /Dy

m(t)

frequency modulator
(carrier frequency = f )

s(t)

35
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Definition:
IT a band-pass signal is represented by

s(t) = A cos[w ¢+ 6()]
= R(¢)cosy(z) where P(t)=w t+ 0(t)

then the instantaneous frequency (Hz) of s(7) is:

1 [dw(t)] £ 1 [dé?(t)

27 dt

Sl =7 ]

For FM: 0(t)=D, jm(ﬁ)dﬁ fi@)= 1. +%Dfm(t)

SEREE TS
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The freguency deviation from the carrier
frequency Is:

1 do(r)
Jfa=1i)—f.= [dt

The peak frequency dev1at10n IS :

AF = max{ 17Z [dz,f)

]

1}

The peak-to-peak deviation is

AF,, = max— 22y - min =2y

SEREE TS
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" Example:

For the case of FM, the instantaneous frequency is:

1 _do(z) 1

fit)=fc + [d

I=Je+ =D m()

f/(t) varies about the assigned carrier frequency f.in a
manner that is directly proportional to the modulated
signal m( ¢).

The peak frequency deviation is :

1

AF = EDpr where V =max[m(z)]

-té QEJ- -3,
38 Your site here O
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An increase in the amplitudm‘/'

the modulation signal V'

U

v

{(a) Sinusoidal Modulating Signal

f. + AF

increase AF

U

increase the bandwidth of
the FM signal

[ —

* but will not affect the
average power level of the
FM signal , which is ACZ /2

39

ntaneous Frequency of the Corresponding FM Signal

s(r)

“AUIARRAR QAL
VI U=

(c) Corresponding FM Signal
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In a similar way, the peak phase
deviation may be defined by:

A6 = max|6(t)]

Example:

For PM: A0 =DV,
where V, =max[m(¢)]

tiaxy
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Definition The phase modulation index :
B, =A406

Where A@ is the peak phase deviation

Definition The frequency modulation index :

AF
Pr= 2
Where A F peak frequency deviation
B bandwidth of the modulating signal

for the case of sinusoidal modulation, B
is the frequency f,, of the sinusoid.
41
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For the case of PM or FM signaling with
sinusoidal modulation, if the PM and FM
signals have the same peak frequency
deviation, then [ is identical to f,.

tiaxy
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épectrum of angle-modulation signals
SN =G - )+ G (f = £

where

G(f)=Flg(t)]=F[A4.e""] (5-50)

To evaluate the spectrum for an angle-modulated signal,
Eq. (5-50) must be evaluated on the case-by-case basis
for the particular modulating waveshape of interest.

OLinury
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"~ Example 5-2
Spectrum of a PM or FM signal with
sinusoidal modulation

Assume that the modulation on PM signal is :

m,(t) =4, Sinw,,t
Then:
O(t) = D, m(t) = Bsin w,t
Where the phase modulation index is £ =D A, = max[&(t)].

The complex envelope is

g(t) :Aceje(t) _ 4 ej,Bsin w1

C
tiaxy
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Example 5-2 con.

g(t) is periodic with period 7 =1/f . Its Fourier series
can be represented by:

N=00

g(t)= Yec,e" (5-565)
N=—00

where _ AC Tnl?2 ( jpsin a)mt) —jl’la)mtdZL

Cn = T j—Tm/Z e e
which reduced to

Cy = 4 [— [/t e dag) = 4.7, ()

0=w,t I T
45
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Example 5-2 con.

Taking the Fourier transform of Eq.(5-55), we get:

G(f) =S e,5(f -nf,)

n=—ao0

o G =4, 21, (B5( -0,

Using the result in [§(/) :%[G(f —f)+G (f = f)]

We may get the spectrum of the angle-modulated signal.

SYIT L oL
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Example 5-2 con. A s =
Carson’s rule ) | 3 ‘ [
In fact, 98% of the total T
power is constrained in that (') l wafes
bandwidth N e =
R
B, =2(f+1)B (—) o I SHBESRS HH e
T 1
(_),1, gl it s el
5 B L ofl ol i L -

47
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“"Narrowband Angle Modulation

When 8( t) iIs restricted to a small value,
the complex envelope may be

approximated by: g(t)=A4e ~ 41+ jO(1)]

e Then a narrowband angle-modulated signal is:
s(t)= A.cosw.t —A.0(t)sinw,.t

discrete carrier term sideband term

 The spectrum of the narrowband angle-modulation signal is:

A s(f— )+ 8(f + L)1+ IO — £)—0(f + )T}

2
(D M(f)
where  o(f) = Flo®]=1 p

f
— M : :
j2n @ for FM signaling

S(f)=

for PM signaling

OLinury

ARSRETHER

ere



Generation of WBFM
The key is to solute the stability of the carrier frequency f,.

idthband Frequency Modulation

1. To use a voltage-controlled oscillator (VCO)

2. Phase-locked loops technology

m(t)

Modulating
signal in
Crystal
oscillator
Josc = fe IN
Frequency
divider
+N

LPF

1

-

(3

VCO e

WBFM

Figure 5-13 Direct method of generating WBFM.

49
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Some important properties of angle-
modulated signals are:

“* The real envelope of an angle-modulated signal
IS constant, and does not depend on the level
of the modulating signal

“ An angle-modulated is a nonlinear function of
the modulation and the bandwidth of the
signal increases as the modulation index
INnCreases;

* The discrete carrier level changes depending
on the modulating signal,

tiaxy
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5.7 Frequency-Division
multiplexing
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Frequency-Division multiplexing

- my(r)
e

< Frequency-division =
multiplexing (FDM) - :
is a technique for == ™ o e
transmitting T g
multiple message
simultaneously \ /_\ | _
over a wideband R o [ g b o 1 e i &
channel. sgonst B 2oy

(k) Spectrum of Composite Baseband Signal

Transm nitter s(t) = FDM

Compaosite baseband

Composite ssculr) (1)

baseband #| Bandpass filter, foey —|  Demodulator, fory p——_e—
gnal
ferall) 1)
st} Main #1 Bandpass filter, fyp [——=| Demodulator, fry [
M
MECEIvET e ——
—_—
sgenlr) my (1)
#= Bandpass filter, fooy | Demodulator, fory [
[} Receiver
2 ) IR ¥ ¥ "'3_
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